کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
568388 876383 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach
چکیده انگلیسی

This paper describes the application of the newly introduced Continuous Ant Colony Optimization Algorithm (CACOA) to optimal design of sewer networks. Two alternative approaches to implement the algorithm is presented and applied to a storm sewer network in which the nodal elevations of the network are considered as the decision variables of the optimization problem. In the first and unconstrained approach, a Gaussian probability density function is used to represent the pheromone concentration over the allowable range of each decision variable. The pheromone concentration function is used by each ant to randomly sample the nodal elevations of the trial networks. This method, however, will lead to solutions which may be infeasible regarding some or all of the constraints of the problem and in particular the minimum slope constraint. In the second and constrained approach, known value of the elevation at downstream node of a pipe is used to define new bounds on the elevation of the upstream node satisfying the explicit constraints on the pipe slopes. Two alternative formulations of the constrained algorithm are used to solve a test example and the results are presented and compared with those of unconstrained approach. The methods are shown to be very effective in locating the optimal solution and efficient in terms of the convergence characteristics of the resulting algorithms. The proposed algorithms are also found to be relatively insensitive to the initial colony and size of the colony used compared to the original algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Engineering Software - Volume 41, Issue 2, February 2010, Pages 188–195
نویسندگان
,