کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
568726 876450 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving the spectral unmixing algorithm to map water turbidity Distributions
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
Improving the spectral unmixing algorithm to map water turbidity Distributions
چکیده انگلیسی

In this paper we evaluate the suitability of the spectral unmixing algorithm to map the turbidity in the Curuai floodplain lake and enhance its applicability using autocorrelation modelling. The Spectral Unmixing Model (SMM) was applied to a Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance (MOD09) image, taking in-situ measurements close to the acquisition date. Fraction images of inorganic matter-laden water, dissolved organic matter-laden water, and phytoplankton-laden water were generated by SMM, using 4 MODIS spectral bands (blue, green, red, and near infrared). These endmembers were selected based on the dominance of these components, which affect water turbidity. These fraction images allowed assessing the turbidity distribution in the study area but showing only places with high or low turbidity. The kernel estimation algorithm was then used to verify the spatial correlation among the in-situ measurement data. The occurrence of clusters suggests that there are different spatial water regimes. One spatial regression model was then compiled for each water regime, each of which presented a better turbidity estimation as opposed to the one derived from the Ordinary Least Square (OLS). The methodology applied was hence useful to analyze the spatial distribution of turbidity in the Curuai floodplain lake.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 24, Issue 9, September 2009, Pages 1051–1061
نویسندگان
, , , , ,