کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
568881 1452296 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Response time assessment in forest fire spread simulation: An integrated methodology for efficient exploitation of available prediction time
ترجمه فارسی عنوان
ارزیابی زمان پاسخ در شبیه سازی گسترش آتش سوزی جنگل: یک روش یکپارچه برای بهره برداری کارآمد از زمان پیش بینی موجود
کلمات کلیدی
پیش بینی گسترش آتش، محاسبات با کارایی بالا، چارچوب پیش بینی، عدم اطمینان داده درختان تصمیم گیری، الگوریتم های ژنتیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
چکیده انگلیسی


• A characterization methodology for 2-stage fire spread prediction method is proposed.
• The 2-stage method is based on evolutionary techniques, involving many simulations.
• Early detection of lengthy simulations allows us to speed up the process considerably.
• Replacement of lengthy simulations involves minimal degradation in the predictions.
• Results are based on a real case study of a large fire in Spain in the year 2012.

This work details a framework developed to shorten the time needed to perform fire spread predictions. The methodology presented relies on a two-stage prediction strategy which introduces a calibration stage in order to relieve the effects of uncertainty on simulator input parameters. Early assessment of the response time and quality of the results obtained constitute a key component in this method. This automatic and intelligent process of identification of lengthy simulations that slow down the course of the predictions presents a very high hit ratio. However, discarding certain simulations from the adjustment process (based on evolutionary algorithms) could lead to loss of accuracy in our predictions. A strong statistical study to analyze the impact of this action on our final predictions is reported. This study is based on a real fire which burnt 13,000 ha in the region of Catalonia (north-east of Spain) in the summer of 2012.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 54, April 2014, Pages 153–164
نویسندگان
, , ,