کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
569042 1452051 2006 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scaling large margin classifiers for spoken language understanding
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Scaling large margin classifiers for spoken language understanding
چکیده انگلیسی

Large margin classifiers, such as SVMs and AdaBoost, have achieved state-of-the-art performance for semantic classification problems that occur in spoken language understanding or textual data mining applications. However, these computationally expensive learning algorithms cannot always handle the very large number of examples, features, and classes that are present in the available training corpora. This paper provides an original and unified presentation of these algorithms within the framework of regularized and large margin linear classifiers, reviews some available optimization techniques, and offers practical solutions to scaling issues. Systematic experiments compare the algorithms according to a number of criteria: performance, robustness, computational and memory requirements, and ease of parallelization. Furthermore, they confirm that the 1-vs-other multiclass scheme is a simple, generic and easy to implement baseline that has excellent scaling properties. Finally, this paper identifies the limitations of the classifiers and the multiclass schemes that are implemented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Speech Communication - Volume 48, Issues 3–4, March–April 2006, Pages 239–261
نویسندگان
,