کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
569661 1452308 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration
چکیده انگلیسی

Process-based models are powerful tools for sustainable and adaptive forest management. Bayesian statistics and global sensitivity analysis allow to reduce uncertainties in parameters and outputs, and they provide better insight of model behaviour. In this work two versions of a process-based model that differed in the autotrophic respiration modelling were analysed. The original version (3PGN) was based on a constant ratio between net and gross primary production, while in a new version (3PGN∗) the autotrophic respiration was modelled as a function of temperature and biomass. A Bayesian framework, and a global sensitivity analysis (Morris method) were used to reduce parametric uncertainty, to highlight strengths and weaknesses of the models and to evaluate their performances. The Bayesian approach allowed also to identify the weaknesses and strengths of the dataset used for the analyses. The Morris method in combination with the Bayesian framework helped to identify key parameters and gave a deeper understanding of model behaviour. Both model versions reliably predicted average stand diameter at breast height, average stand height, stand volume and stem biomass. On the contrary, the models were not able to accurately predict net ecosystem production. Bayesian model comparison showed that 3PGN∗, with the new autotrophic respiration model, has a higher conditional probability of being correct than the original 3PGN model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 42, April 2013, Pages 99–115
نویسندگان
, , , , , ,