کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
570096 876711 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluating remotely sensed rainfall estimates using nonlinear mixed models and geographically weighted regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
Evaluating remotely sensed rainfall estimates using nonlinear mixed models and geographically weighted regression
چکیده انگلیسی

This article evaluates an infrared-based satellite algorithm for rainfall estimation, the Convective Stratiform technique, over Mediterranean. Unlike a large number of works that evaluate remotely sensed estimates concentrating on global measures of accuracy, this work examines the relationship between ground truth and satellit0e derived data in a local scale. Hence, we examine the fit of ground truth and remotely sensed data on a widely adopted probability distribution for rainfall totals – the mixed lognormal distribution – per measurement location. Moreover, we test for spatial nonstationarity in the relationship between in situ observed and satellite-estimated rainfall totals. The former investigation takes place via using recent algorithms that estimate nonlinear mixed models whereas the latter uses geographically weighted regression.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 23, Issue 12, December 2008, Pages 1438–1447
نویسندگان
, , , , ,