کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5709492 | 1604180 | 2017 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An entropy-assisted musculoskeletal shoulder model
ترجمه فارسی عنوان
مدل شانه اسکلتی عضلانی با کمک آنتروپی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
ارتوپدی، پزشکی ورزشی و توانبخشی
چکیده انگلیسی
Optimization combined with a musculoskeletal shoulder model has been used to estimate mechanical loading of musculoskeletal elements around the shoulder. Traditionally, the objective function is to minimize the summation of the total activities of the muscles with forces, moments, and stability constraints. Such an objective function, however, tends to neglect the antagonist muscle co-contraction. In this study, an objective function including an entropy term is proposed to address muscle co-contractions. A musculoskeletal shoulder model is developed to apply the proposed objective function. To find the optimal weight for the entropy term, an experiment was conducted. In the experiment, participants generated various 3-D shoulder moments in six shoulder postures. The surface EMG of 8 shoulder muscles was measured and compared with the predicted muscle activities based on the proposed objective function using Bhattacharyya distance and concordance ratio under different weight of the entropy term. The results show that a small weight of the entropy term can improve the predictability of the model in terms of muscle activities. Such a result suggests that the concept of entropy could be helpful for further understanding the mechanism of muscle co-contractions as well as developing a shoulder biomechanical model with greater validity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electromyography and Kinesiology - Volume 33, April 2017, Pages 103-110
Journal: Journal of Electromyography and Kinesiology - Volume 33, April 2017, Pages 103-110
نویسندگان
Xu Xu, Jia-hua Lin, Raymond W. McGorry,