کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5716999 1411175 2017 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predictive Modeling of Health ConditionsIdentification and Validation of a Sickle Cell Disease Cohort Within Electronic Health Records
ترجمه فارسی عنوان
مدل سازی پیش بینی کننده شرایط بهداشتی شناسایی و تایید یک بیماری سلولی سقط شده در پرونده های بهداشت الکترونیکی
کلمات کلیدی
شناسایی مورد، فنوتیپ قابل محاسبه رکورد سلامتی الکترونیکی، مدارک پزشکی الکترونیکی، بیماری سلول داسی شکل،
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی پریناتولوژی (پزشکی مادر و جنین)، طب اطفال و بهداشت کودک
چکیده انگلیسی

ObjectiveTo develop and validate a computable phenotype algorithm for identifying patient populations with sickle cell disease.MethodsIn this retrospective study we used electronic health record data from the Children's Hospital of Wisconsin to develop a computable phenotype algorithm for sickle cell disease. The algorithm was on the basis of the International Classification of Diseases, Ninth Revision codes, number of visits, and hospital admissions for sickle cell disease. Using Informatics for Integrating Biology and the Bedside queries, the algorithm was refined in an iterative process. The final algorithm was verified using manual medical records review and by comparison with a gold standard set of confirmed sickle cell cases. The algorithm was then validated at Froedtert Hospital, a neighboring health system for adults.ResultsFrom the Children's Hospital of Wisconsin, our computable phenotype algorithm identified patients with confirmed sickle cell disease with a positive predictive value of 99.4% and a sensitivity of 99.4%. Additionally, using data from Froedtert, the computable phenotype algorithm identified patients with confirmed sickle cell disease with a positive predictive value of 95.8% and a sensitivity of 98.3%.ConclusionsThe computable phenotype algorithm developed in this study had a high sensitivity and positive predictive value when identifying patients with sickle cell disease in the electronic health records of the Children's Hospital of Wisconsin and Froedtert, a neighboring health system for adults. Our algorithm allows us to harness data provided by the electronic health record to rapidly and accurately identify patient with sickle cell disease and is a rich resource for future clinical trials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Academic Pediatrics - Volume 17, Issue 3, April 2017, Pages 283-287
نویسندگان
, , , ,