کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5755556 | 1621800 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
SIFT optimization and automation for matching images from multiple temporal sources
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Scale Invariant Feature Transformation (SIFT) was applied to extract tie-points from multiple source images. Although SIFT is reported to perform reliably under widely different radiometric and geometric conditions, using the default input parameters resulted in too few points being found. We found that the best solution was to focus on large features as these are more robust and not prone to scene changes over time, which constitutes a first approach to the automation of processes using mapping applications such as geometric correction, creation of orthophotos and 3D models generation. The optimization of five key SIFT parameters is proposed as a way of increasing the number of correct matches; the performance of SIFT is explored in different images and parameter values, finding optimization values which are corroborated using different validation imagery. The results show that the optimization model improves the performance of SIFT in correlating multitemporal images captured from different sources.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Applied Earth Observation and Geoinformation - Volume 57, May 2017, Pages 113-122
Journal: International Journal of Applied Earth Observation and Geoinformation - Volume 57, May 2017, Pages 113-122
نویسندگان
Sebastián Castillo-Carrión, José-Emilio Guerrero-Ginel,