کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5761260 1624436 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A simple Bayesian method for adjusting ensemble of crop model outputs to yield observations
ترجمه فارسی عنوان
یک روش بیزی ساده برای تنظیم مجموعه ای از خروجی های مدل محصول برای انجام مشاهدات
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی
Multi-model forecasting has drawn some attention in crop science for evaluating effect of climate change on crop yields. The principle is to run several individual process-based crop models under several climate scenarios in order to generate ensembles of output values. This paper describes a simple Bayesian method - called Bayes linear method - for updating ensemble of crop model outputs using yield observations. The principle is to summarize the ensemble of crop model outputs by its mean and variance, and then to adjust these two quantities to yield observations in order to reduce uncertainty. The adjusted mean and variance combine two sources of information, i.e., the ensemble of crop model outputs and the observations. Interestingly, with this method, observations collected under a given climate scenario can be used to adjust mean and variance of the model ensemble under a different scenario. Another advantage of the proposed method is that it does not rely on a separate calibration of each individual crop model. The uncertainty reduction resulting from the adjustment of an ensemble of crop models to observations was assessed in a numerical application. The implementation of the Bayes linear method systematically reduced uncertainty, but the results showed the effectiveness of this method varied in function of several factors, especially the accuracy of the yield observation, and the covariance between the crop model output and the observation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Agronomy - Volume 88, August 2017, Pages 76-83
نویسندگان
,