کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5763837 1625611 2017 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models
ترجمه فارسی عنوان
برخی از ملاحظات در طرح های عددی برای درمان مشکلات هذلولی در مدل های دو لایه
کلمات کلیدی
معادلات آب زیرزمینی دو لایه، سیستم های هذلولی غیر محافظه کار، روش های جالب حجم محدود مدل عمق عمودی،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی
Multi-layer depth-averaged models are widely employed in various hydraulic engineering applications. Yet, such models are not strictly hyperbolic. Their equation systems typically lose hyperbolicity when the relative velocities between layers become too large, which is associated with Kelvin-Helmholtz instabilities involving turbulent momentum exchanges between the layers. Focusing on the two-layer case, we present a numerical improvement that locally avoids the loss of hyperbolicity. The proposed modification introduces an additional momentum exchange between layers, whose value is iteratively calculated to be strictly sufficient to keep the system hyperbolic. The approach can be easily implemented in any finite volume scheme and there is no limitation concerning the density ratio between layers. Numerical examples, employing both HLL-type and Roe-type approximate Riemann solvers, are reported to validate the method and its key features.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 100, February 2017, Pages 183-198
نویسندگان
, , , , ,