کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5771852 | 1630435 | 2017 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Separated monic representations I: Gorenstein-projective modules
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a finite acyclic quiver Q, an ideal I of a path algebra kQ generated by monomial relations, and a finite-dimensional k-algebra A, we introduce the separated monic representations of a bound quiver (Q,I) over A. They differ from the (usual) monic representations. The category smon(Q,I,A) of the separated monic representations of (Q,I) over A coincides with the category mon(Q,I,A) of the (usual) monic representations if and only if I=0 and each vertex of Q is the ending vertex of at most one arrow. We give properties of the structural maps of separated monic representations, and prove that smon(Q,I,A) is a resolving subcategory of rep(Q,I,A). We introduce the condition (G). Let Î:=AâkQ/I. By the equivalence rep(Q,I,A)â
Î-mod of categories, the main result claims that a Î-module is Gorenstein-projective if and only if it is in smon(Q,I,A) and has a local A-Gorenstein-projective property (G). As consequences, the separated monic Î-modules are exactly the projective Î-modules if and only if A is semi-simple; and they are exactly the Gorenstein-projective Î-modules if and only if A is self-injective, and if and only if smon(Q,I,A) is a Frobenius category.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 479, 1 June 2017, Pages 1-34
Journal: Journal of Algebra - Volume 479, 1 June 2017, Pages 1-34
نویسندگان
Xiu-Hua Luo, Pu Zhang,