کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5771861 1630435 2017 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic properties of infinite directed unions of local quadratic transforms
ترجمه فارسی عنوان
خواص همبستگی اتحادیه های بی نهایت از تغییرات درجه دوم محلی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
Let (R,m) be a regular local ring of dimension at least 2. For each valuation domain birationally dominating R, there is an associated sequence {Rn} of local quadratic transforms of R. We consider the case where this sequence {Rn}n≥0 is infinite and examine properties of the integrally closed local domain S=⋃n≥0Rn in the case where S is not a valuation domain. For this sequence, there is an associated boundary valuation ring V=⋃n≥0⋂i≥nVi, where Vi is the order valuation ring of Ri. There exists a unique minimal proper Noetherian overring T of S. T is the regular Noetherian UFD obtained by localizing outside the maximal ideal of S and S=V∩T. In the present paper, we define functions w and e, where w is the asymptotic limit of the order valuations and e is the limit of the orders of transforms of principal ideals. We describe V explicitly in terms of w and e and prove that V is either rank 1 or rank 2. We define an invariant τ associated to S that is either a positive real number or +∞. If τ is finite, then S is archimedean and T is not local. In this case, the function w defines the rank 1 valuation overring W of V and W dominates S. The rational dependence of τ over w(T×) determines whether S is completely integrally closed and whether V has rank 1. We give examples where S is completely integrally closed. If τ is infinite, then S is non-archimedean and T is local. In this case, the function e defines the rank 1 valuation overring E of V. The valuation ring E is a DVR and E dominates T, and in certain cases we prove that E is the order valuation ring of T.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 479, 1 June 2017, Pages 216-243
نویسندگان
, , ,