کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5772297 1413358 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Chern's conjecture for minimal hypersurfaces and rigidity of self-shrinkers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On Chern's conjecture for minimal hypersurfaces and rigidity of self-shrinkers
چکیده انگلیسی
Using the generalized Yau parameter method and the Sylvester theory, we verify that if M is a compact minimal hypersurface in Sn+1 whose squared length of the second fundamental form satisfies 0≤|A|2−n≤n22, then |A|2≡n and M is a Clifford torus. Moreover, we prove that if M is a complete self-shrinker with polynomial volume growth in Rn+1, and if the squared length of the second fundamental form of M satisfies 0≤|A|2−1≤121, then |A|2≡1 and M is a round sphere or a cylinder. Our results improve the rigidity theorems due to Ding and Xin [21], [22].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 273, Issue 11, 1 December 2017, Pages 3406-3425
نویسندگان
, ,