| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5772465 | 1413371 | 2017 | 29 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Property (TLΦ) and property (FLΦ) for Orlicz spaces LΦ
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												An Orlicz space LΦ(Ω) is a Banach function space defined by using a Young function Φ, which generalizes the Lp spaces. We show, for an Orlicz space LΦ([0,1]) which is not isomorphic to Lâ([0,1]), if a locally compact second countable group has property (TLΦ([0,1])), which is a generalization of Kazhdan's property (T) for linear isometric representations on LΦ([0,1]), then it has Kazhdan's property (T). We also show, for a separable complex Orlicz space LΦ(Ω) with gauge norm, Ω=R,[0,1],N, if a locally compact second countable group has Kazhdan's property (T), then it has property (TLΦ(Ω)). We prove, for a finitely generated group Î and a Banach space B whose modulus of convexity is sufficiently large, if Î has Kazhdan's property (T), then it has property (FB), which is a fixed point property for affine isometric actions on B. Moreover, we see that, for a hyperbolic group Î (which may have Kazhdan's property (T)) and an Orlicz sequence space âΦΨ with gauge norm such that the Young function Ψ sufficiently rapidly increases near 0, Î doesn't have property (FâΦΨ). These results are generalizations of the results for Lp-spaces.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 272, Issue 4, 15 February 2017, Pages 1406-1434
											Journal: Journal of Functional Analysis - Volume 272, Issue 4, 15 February 2017, Pages 1406-1434
نویسندگان
												Mamoru Tanaka,