کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5772751 1413383 2017 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Idempotent endomorphisms of free MV-algebras and unital ℓ-groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Idempotent endomorphisms of free MV-algebras and unital ℓ-groups
چکیده انگلیسی
Several papers deal with the problem of counting the number of idempotent endomorphisms of a structure S onto a substructure T. In this paper we consider the case when T is a projective lattice-ordered abelian group with a distinguished strong order unit, or equivalently, a projective MV-algebra. Suppose A is the image (=range) of an idempotent endomorphism of the free n-generator MV-algebra M([0,1]n) of McNaughton functions on [0,1]n. We prove that the number r(A) of idempotent endomorphisms of M([0,1]n) onto A is finite if, and only if, the maximal spectral space μA is homeomorphic to a (Kuratowski) closed domain M of [0,1]n, in the sense that M=cl(int(M)). Further, the closed domain condition is decidable and r(A) is computable, once an idempotent endomorphism of M([0,1]n) onto A is explicitly given. Thus every finitely generated projective MV-algebra B comes equipped with a new invariant ι(B)=sup⁡{r(A)|A≅B, for A the image of an idempotent endomorphism of M([0,1]k)}, and k the smallest number of generators of B. We compute ι(B) for many projective MV-algebras B existing in the literature. Various problems concerning idempotent endomorphisms of free MV-algebras are shown to be decidable. Via the Γ functor, our results and computations automatically transfer to finitely generated projective abelian ℓ-groups with a distinguished strong unit.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 221, Issue 4, April 2017, Pages 908-934
نویسندگان
, ,