کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5772904 | 1413392 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The regularity index of up to 2n â 1 equimultiple fat points of Pn
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let X=mP1+â¯+mPn+k be a fat point subscheme of Pn, where Supp(X) consists of n+k distinct points which generate Pn. We study the regularity index Ï(X) of X, which is the least degree in which the Hilbert function of X equals its Hilbert polynomial. We prove that the generalized Segre's bound for Ï(X) holds if nâ¥4 and there are k+3 points of Supp(X) on a linear subspace ÎâP3. We assume Supp(X) is not in general position and call d the least integer for which there exists a linear subspace Î of dimension d containing at least d+2 points of Supp(X). We prove that the generalized Segre's bound holds for simple points when either 3â¤kâ¤n+1 and d>kâ3 or k=4 with no restriction on d. For mâ¥2 we prove the generalized Segre's bound when Supp(X) consists of n+4 points and either there are at least 3 points on a line or at least 5 points on a plane or at least 6 points on a linear subspace ÎâP3. Finally we prove that, in general, 2mâ1â¤Ï(X)â¤2m when 3â¤kâ¤nâ1 and d>kâ1, and we extend this result to the non-equimultiple case. We also provide cases in which the previous bound gives the generalized Segre's bound.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 221, Issue 6, June 2017, Pages 1423-1437
Journal: Journal of Pure and Applied Algebra - Volume 221, Issue 6, June 2017, Pages 1423-1437
نویسندگان
G. Calussi, G. Fatabbi, A. Lorenzini,