کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773141 1631063 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Expressing infinite matrices over rings as products of involutions
ترجمه فارسی عنوان
ماتریسهای نامتناهی بر روی حلقه ها به عنوان محصولاتی از انحرافات بیان شده است
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
Let K be an arbitrary field and R be an arbitrary associative ring with identity 1. Słowik in [12] proved that each matrix of ±UT(∞,K) (the group of upper triangular infinite matrices whose entries lying on the main diagonal are equal to either 1 or −1) can be expressed as a product of at most five involutions. In this article, we extend the investigate to an arbitrary associative ring R with identity 1. Our conclusion is that every element of ±UT(∞,R) can be expressed as a product of at most four involutions. We also prove that for the complex field every element of ΩT(∞,C) (the group of upper triangular infinite matrices whose entries lying on the main diagonal satisfy aa‾=1) can be expressed as a product of at most three coninvolutions (matrices satisfying AA‾=I).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 532, 1 November 2017, Pages 257-265
نویسندگان
, , ,