کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773393 1631068 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Null- and Positivstellensätze for rationally resolvable ideals
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Null- and Positivstellensätze for rationally resolvable ideals
چکیده انگلیسی
Hilbert's Nullstellensatz characterizes polynomials that vanish on the vanishing set of an ideal in C[X_]. In the free algebra C the vanishing set of a two-sided ideal I is defined in a dimension-free way using images in finite-dimensional representations of C/I. In this article Nullstellensätze for a simple but important class of ideals in the free algebra - called tentatively rationally resolvable here - are presented. An ideal is rationally resolvable if its defining relations can be eliminated by expressing some of the X_ variables using noncommutative rational functions in the remaining variables. Whether such an ideal I satisfies the Nullstellensatz is intimately related to embeddability of C/I into (free) skew fields. These notions are also extended to free algebras with involution. For instance, it is proved that a polynomial vanishes on all tuples of spherical isometries iff it is a member of the two-sided ideal I generated by 1−∑jXj⊺Xj. This is then applied to free real algebraic geometry: polynomials positive semidefinite on spherical isometries are sums of Hermitian squares modulo I. Similar results are obtained for nc unitary groups.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 527, 15 August 2017, Pages 260-293
نویسندگان
, , ,