کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773508 1413428 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of degenerate cross-diffusion population models with volume filling
ترجمه فارسی عنوان
تجزیه و تحلیل مدل های جمعیت متقاطع متخلخل با پر شدن حجم
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
A class of parabolic cross-diffusion systems modeling the interaction of an arbitrary number of population species is analyzed in a bounded domain with no-flux boundary conditions. The equations are formally derived from a random-walk lattice model in the diffusion limit. Compared to previous results in the literature, the novelty is the combination of general degenerate diffusion and volume-filling effects. Conditions on the nonlinear diffusion coefficients are identified, which yield a formal gradient-flow or entropy structure. This structure allows for the proof of global-in-time existence of bounded weak solutions and the exponential convergence of the solutions to the constant steady state. The existence proof is based on an approximation argument, the entropy inequality, and new nonlinear Aubin-Lions compactness lemmas. The proof of the large-time behavior employs the entropy estimate and convex Sobolev inequalities. Moreover, under simplifying assumptions on the nonlinearities, the uniqueness of weak solutions is shown by using the H−1 method, the E-monotonicity technique of Gajewski, and the subadditivity of the Fisher information.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 34, Issue 1, January–February 2017, Pages 1-29
نویسندگان
, ,