کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5773648 | 1631342 | 2017 | 55 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sp(3,R) Monge geometries in dimension 8
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study a geometry associated with rank 3 distributions in dimension 8, whose symbol algebra is constant and has a simple Lie algebra sp(3,R) as Tanaka prolongation. We restrict our considerations to only those distributions that are defined in terms of a systems of ODEs of the form zËij=â2f(xË1,xË2)âxËiâxËj, iâ¤j=1,2. For them we built the full system of local differential invariants, by solving an equivalence problem à la Cartan, in the spirit of his 1910's five variable paper. The considered geometry is a parabolic geometry, and we show that its main invariant - the harmonic curvature - is a certain quintic. In the case when this quintic is maximally degenerate but nonzero, we use Cartan's reduction procedure and reduce the EDS governing the invariants to 11, 10 and 9 dimensions. As a byproduct all homogeneous models having maximally degenerate harmonic curvature quintic are found. They have symmetry algebras of dimension 11 (a unique structure), 10 (a 1-parameter family of nonequivalent structures) or 9 (precisely two nonequivalent structures).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 53, August 2017, Pages 1-55
Journal: Differential Geometry and its Applications - Volume 53, August 2017, Pages 1-55
نویسندگان
Ian M. Anderson, PaweÅ Nurowski,