کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773673 1631343 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Toda frames, harmonic maps and extended Dynkin diagrams
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Toda frames, harmonic maps and extended Dynkin diagrams
چکیده انگلیسی
We consider a natural subclass of harmonic maps from a surface into G/T, namely cyclic primitive maps. Here G is any simple real Lie group (not necessarily compact), T is a Cartan subgroup and both are chosen so that there is a Coxeter automorphism on GC/TC which restricts to give a k-symmetric space structure on G/T. When G is compact, any Coxeter automorphism restricts to the real form. It was shown in [3] that cyclic primitive immersions into compact G/T correspond to solutions of the affine Toda field equations and all those of a genus one surface can be constructed by integrating a pair of commuting vector fields on a finite dimensional vector subspace of a Lie algebra. We generalise these results, removing the assumption that G is compact. The first major obstacle is that a Coxeter automorphism may not restrict to a non-compact real form. We characterise, in terms of extended Dynkin diagrams, those simple real Lie groups G and Cartan subgroups T such that G/T has a k-symmetric space structure induced from a Coxeter automorphism. A Coxeter automorphism preserves the real Lie algebra g if and only if any corresponding Cartan involution defines a permutation of the extended Dynkin diagram for gC=g⊗C; we show that every involution of the extended Dynkin diagram for a simple complex Lie algebra gC is induced by a Cartan involution of a real form of gC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 52, June 2017, Pages 142-157
نویسندگان
, ,