کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774011 | 1413540 | 2017 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper is devoted to the question of global and local asymptotic stability for nonlinear damped Kirchhoff systems, with homogeneous Dirichlet boundary conditions, under fairly natural assumptions on the external force f=f(t,x,u), the distributed damping Q=Q(t,x,u,ut), the perturbation term μ|u|pâ2u and the dissipative term ϱ(t)M([u]sp)|ut|pâ2ut, with ϱâ¥0 and in Lloc1(R0+), when the initial data are in a special region. Here u=(u1,â¦,uN)=u(t,x) represents the vectorial displacement, with Nâ¥1. Particular attention is devoted to the asymptotic behavior of the solutions in the linear case specified in Section 5. Finally, the results are extended to problems where the fractional p-Laplacian is replaced by a more general elliptic nonlocal integro-differential operator. The paper extends in several directions recent theorems and covers also the so-called degenerate case, that is the case in which M is zero at zero.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 263, Issue 5, 5 September 2017, Pages 2375-2418
Journal: Journal of Differential Equations - Volume 263, Issue 5, 5 September 2017, Pages 2375-2418
نویسندگان
Patrizia Pucci, Sara Saldi,