کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5774193 1413549 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions
ترجمه فارسی عنوان
انتشار در رسانه های دوره ای فضا-زمان تحت کنترل یک معادله ی منحصر به فرد با مرزهای آزاد، قسمت اول: توابع اولیه پیوسته
کلمات کلیدی
مرز رایگان فضا زمان رسانه های دوره ای، فروپاشیدگی دوگانگی ناگهانی،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We aim to classify the long-time behavior of the solution to a free boundary problem with monostable reaction term in space-time periodic media. Such a model may be used to describe the spreading of a new or invasive species, with the free boundary representing the expanding front. In time-periodic and space homogeneous environment, as well as in space-periodic and time autonomous environment, such a problem has been studied recently in [11], [12]. In both cases, a spreading-vanishing dichotomy has been established, and when spreading happens, the asymptotic spreading speed is proved to exist by making use of the corresponding semi-wave solutions. The approaches in [11], [12] seem difficult to apply to the current situation where the environment is periodic in both space and time. Here we take a different approach, based on the methods developed by Weinberger [31], [32] and others [16], [22], [23], [24], [26], which yield the existence of the spreading speed without using traveling wave solutions. In Part 1 of this work, we establish the existence and uniqueness of classical solutions for the free boundary problem with continuous initial data, extending the existing theory which was established only for C2 initial data. This will enable us to develop Weinberger's method in Part 2 to determine the spreading speed without knowing a priori the existence of the corresponding semi-wave solutions. In Part 1 here, we also establish a spreading-vanishing dichotomy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 262, Issue 10, 15 May 2017, Pages 4988-5021
نویسندگان
, , ,