کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774224 | 1413551 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonintegrability of dynamical systems with homo- and heteroclinic orbits
ترجمه فارسی عنوان
عدم سازگاری سیستم های دینامیکی با مدارهای همگن و هتروکلینیکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
We consider general n-dimensional systems of differential equations having an (nâ2)-dimensional, locally invariant manifold on which there exist equilibria connected by heteroclinic orbits for nâ¥3. The system may be non-Hamiltonian and have no saddle-centers, and the equilibria are allowed to be the same and connected by a homoclinic orbit. Under additional assumptions, we prove that the monodromy group for the normal variational equation, which is represented by components of the variational equation normal to the locally invariant manifold and defined on a Riemann surface, is diagonalizable or infinitely cyclic if the system is real-meromorphically integrable in the meaning of Bogoyavlenski. We apply our theory to a three-dimensional volume-preserving system describing the streamline of a steady incompressible flow with two parameters, and show that it is real-meromorphically nonintegrable for almost all values of the two parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 263, Issue 2, 15 July 2017, Pages 1009-1027
Journal: Journal of Differential Equations - Volume 263, Issue 2, 15 July 2017, Pages 1009-1027
نویسندگان
Kazuyuki Yagasaki, Shogo Yamanaka,