کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774353 | 1413556 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Asymptotic behavior of gradient-like dynamical systems involving inertia and multiscale aspects
ترجمه فارسی عنوان
رفتار همبسته از سیستم های دینامیکی شیب مانند جنبه های اینرسی و چند بعدی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
In a Hilbert space H, we study the asymptotic behavior, as time variable t goes to +â, of nonautonomous gradient-like dynamical systems involving inertia and multiscale features. Given Φ:HâR and Ψ:HâR two convex differentiable functions, γ a positive damping parameter, and ϵ(t) a function of t which tends to zero as t goes to +â, we consider the second-order differential equationx¨(t)+γxË(t)+âΦ(x(t))+ϵ(t)âΨ(x(t))=0. This system models the emergence of various collective behaviors in game theory, as well as the asymptotic control of coupled nonlinear oscillators. Assuming that ϵ(t) tends to zero moderately slowly as t goes to infinity, we show that the trajectories converge weakly in H. The limiting equilibria are solutions of the hierarchical minimization problem which consists in minimizing Ψ over the set C of minimizers of Φ. As key assumptions, we suppose that â«0+âϵ(t)dt=+â and that, for every p belonging to a convex cone C depending on the data Φ and Ψâ«0+â[Φâ(ϵ(t)p)âÏC(ϵ(t)p)]dt<+â where Φâ is the Fenchel conjugate of Φ, and ÏC is the support function of C. An application is given to coupled oscillators.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 262, Issue 3, 5 February 2017, Pages 2745-2770
Journal: Journal of Differential Equations - Volume 262, Issue 3, 5 February 2017, Pages 2745-2770
نویسندگان
Hedy Attouch, Marc-Olivier Czarnecki,