کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776609 | 1632156 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fully-geometric mesh one-leg methods for the generalized pantograph equation: Approximating Lyapunov functional and asymptotic contractivity
ترجمه فارسی عنوان
روشهای یکپارچه مش کاملا هندسی برای معادله پانزدهم تعمیم یافته: تقریب معادله عملکردهای لایپونوف و قراردادنندگی آسیمپتواتیک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
چکیده انگلیسی
Motivated by recent stability results on one-step methods, especially Runge-Kutta methods, for the generalized pantograph equation (GPE), in this paper we study the stability of one-leg multistep methods for these equations since the one-leg methods have less computational cost than Runge-Kutta methods. To do this, a new stability concept, Gq(q¯)-stability defined for variable stepsizes one-leg methods with the stepsize ratio q which is an extension of G-stability defined for constant stepsizes one-leg methods, is introduced. The Lyapunov functional of linear system is obtained and numerically approximated. It is proved that a Gq(q¯)-stable fully-geometric mesh one-leg method can preserve the decay property of the Lyapunov functional for any qâ[1,q¯]. The asymptotic contractivity, a new stability concept at vanishing initial interval, is introduced for investigating the effect of the initial interval approximation on the stability of numerical solutions. This property and the bounded stability of Gq(q¯)-stable one-leg methods for linear and nonlinear problems are analyzed. A numerical example which further illustrates our theoretical results is provided.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 117, July 2017, Pages 50-68
Journal: Applied Numerical Mathematics - Volume 117, July 2017, Pages 50-68
نویسندگان
Wansheng Wang,