کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776802 | 1413642 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cycle extension in edge-colored complete graphs
ترجمه فارسی عنوان
فرمت چرخه در نمودارهای لبه رنگی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
گراف لبه رنگ گراف کامل چرخه مناسب رنگ
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
Let G be an edge-colored graph. The minimum color degree of G is the minimum number of different colors appearing on the edges incident with the vertices of G. In this paper, we study the existence of properly edge-colored cycles in (not necessarily properly) edge-colored complete graphs. Fujita and Magnant (2011) conjectured that in an edge-colored complete graph on n vertices with minimum color degree at least (n+1)â2, each vertex is contained in a properly edge-colored cycle of length k, for all k with 3â¤kâ¤n. They confirmed the conjecture for k=3 and k=4, and they showed that each vertex is contained in a properly edge-colored cycle of length at least 5 when nâ¥13, but even the existence of properly edge-colored Hamilton cycles is unknown (in complete graphs that satisfy the conditions of the conjecture). We prove a cycle extension result that implies that each vertex is contained in a properly edge-colored cycle of length at least the minimum color degree.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 340, Issue 6, June 2017, Pages 1235-1241
Journal: Discrete Mathematics - Volume 340, Issue 6, June 2017, Pages 1235-1241
نویسندگان
Ruonan Li, Hajo Broersma, Chuandong Xu, Shenggui Zhang,