کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5776802 1413642 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cycle extension in edge-colored complete graphs
ترجمه فارسی عنوان
فرمت چرخه در نمودارهای لبه رنگی
کلمات کلیدی
گراف لبه رنگ گراف کامل چرخه مناسب رنگ
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
Let G be an edge-colored graph. The minimum color degree of G is the minimum number of different colors appearing on the edges incident with the vertices of G. In this paper, we study the existence of properly edge-colored cycles in (not necessarily properly) edge-colored complete graphs. Fujita and Magnant (2011) conjectured that in an edge-colored complete graph on n vertices with minimum color degree at least (n+1)∕2, each vertex is contained in a properly edge-colored cycle of length k, for all k with 3≤k≤n. They confirmed the conjecture for k=3 and k=4, and they showed that each vertex is contained in a properly edge-colored cycle of length at least 5 when n≥13, but even the existence of properly edge-colored Hamilton cycles is unknown (in complete graphs that satisfy the conditions of the conjecture). We prove a cycle extension result that implies that each vertex is contained in a properly edge-colored cycle of length at least the minimum color degree.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 340, Issue 6, June 2017, Pages 1235-1241
نویسندگان
, , , ,