کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5777534 | 1632922 | 2017 | 72 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compatibility fans for graphical nested complexes
ترجمه فارسی عنوان
سازندگان برای مجتمع های توکار گرافیکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
Graph associahedra generalize classical associahedra. They realize the nested complex of a graph G, i.e. the simplicial complex whose vertices are the tubes (connected induced subgraphs) of G and whose faces are the tubings (collections of pairwise nested or non-adjacent tubes) of G. The constructions of M. Carr and S. Devadoss, of A. Postnikov, and of A. Zelevinsky for graph associahedra are all based on the nested fan, which coarsens the normal fan of the permutahedron. In view of the variety of fan realizations of associahedra, it is tempting to look for alternative fans realizing graphical nested complexes. Motivated by the analogy between finite type cluster complexes and graphical nested complexes, we transpose S. Fomin and A. Zelevinsky's compatibility fans from the former to the latter setting. We define a compatibility degree between two tubes of a graph G and show that the compatibility vectors of all tubes of G with respect to an arbitrary maximal tubing on G support a fan realizing the nested complex of G. When G is a path, we recover F. Santos' Catalan many realizations of the associahedron.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 150, August 2017, Pages 36-107
Journal: Journal of Combinatorial Theory, Series A - Volume 150, August 2017, Pages 36-107
نویسندگان
Thibault Manneville, Vincent Pilaud,