کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777953 1633054 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Borsuk-Ulam type theorem for the product of a projective space and 3-sphere
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
A Borsuk-Ulam type theorem for the product of a projective space and 3-sphere
چکیده انگلیسی
The classical Borsuk Ulam theorem can be stated as: there exists no equivariant map Sn→Sn−1, relative to the antipodal actions on the spheres. Let G=Z2 act freely on a finitistic space X with mod 2 cohomology ring isomorphic to that of the product of a projective space (real, complex or quaternionic) and the 3-sphere. In this paper, we show that the Volovikov's index of RPm×S3 is any one of the integers 2, 4, m+3 or m+4. In case of CPm×S3, this index is 3, 4 or 2m+4 and that of HPm×S3 is 4, 5, 8 or 9. We apply this to determine the possibilities of nonexistence of equivariant maps X→Sn or Sn→X.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 225, 1 July 2017, Pages 112-129
نویسندگان
, , ,