کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777974 1633056 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Free topological vector spaces
ترجمه فارسی عنوان
فضاهای بردار توپولوژیک رایگان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
چکیده انگلیسی
In this paper the free topological vector space V(X) over a Tychonoff space X is defined and studied. It is proved that V(X) is a kω-space if and only if X is a kω-space. If X is infinite, then V(X) contains a closed vector subspace which is topologically isomorphic to V(N). It is proved that for X a k-space, the free topological vector space V(X) is locally convex if and only if X is discrete and countable. The free topological vector space V(X) is shown to be metrizable if and only if X is finite if and only if V(X) is locally compact. Further, V(X) is a cosmic space if and only if X is a cosmic space if and only if the free locally convex space L(X) on X is a cosmic space. If a sequential (for example, metrizable) space Y is such that the free locally convex space L(Y) embeds as a subspace of V(X), then Y is a discrete space. It is proved that V(X) is a barreled topological vector space if and only if X is discrete. This result is applied to free locally convex spaces L(X) over a Tychonoff space X by showing that: (1) L(X) is quasibarreled if and only if L(X) is barreled if and only if X is discrete, and (2) L(X) is a Baire space if and only if X is finite.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 223, 1 June 2017, Pages 30-49
نویسندگان
, ,