کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5777974 | 1633056 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Free topological vector spaces
ترجمه فارسی عنوان
فضاهای بردار توپولوژیک رایگان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
هندسه و توپولوژی
چکیده انگلیسی
In this paper the free topological vector space V(X) over a Tychonoff space X is defined and studied. It is proved that V(X) is a kÏ-space if and only if X is a kÏ-space. If X is infinite, then V(X) contains a closed vector subspace which is topologically isomorphic to V(N). It is proved that for X a k-space, the free topological vector space V(X) is locally convex if and only if X is discrete and countable. The free topological vector space V(X) is shown to be metrizable if and only if X is finite if and only if V(X) is locally compact. Further, V(X) is a cosmic space if and only if X is a cosmic space if and only if the free locally convex space L(X) on X is a cosmic space. If a sequential (for example, metrizable) space Y is such that the free locally convex space L(Y) embeds as a subspace of V(X), then Y is a discrete space. It is proved that V(X) is a barreled topological vector space if and only if X is discrete. This result is applied to free locally convex spaces L(X) over a Tychonoff space X by showing that: (1) L(X) is quasibarreled if and only if L(X) is barreled if and only if X is discrete, and (2) L(X) is a Baire space if and only if X is finite.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 223, 1 June 2017, Pages 30-49
Journal: Topology and its Applications - Volume 223, 1 June 2017, Pages 30-49
نویسندگان
Saak S. Gabriyelyan, Sidney A. Morris,