کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5778130 1633430 2017 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bar recursion over finite partial functions
ترجمه فارسی عنوان
بازگشت مجدد نوار به توابع جزئی محدود
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
چکیده انگلیسی
We introduce a new, demand-driven variant of Spector's bar recursion in the spirit of the Berardi-Bezem-Coquand functional of [4]. The recursion takes place over finite partial functions u, where the control parameter ω, used in Spector's bar recursion to terminate the computation at sequences s satisfying ω(sˆ)<|s|, now acts as a guide for deciding exactly where to make bar recursive updates, terminating the computation whenever ω(uˆ)∈dom(u). We begin by exploring theoretical aspects of this new form of recursion, then in the main part of the paper we show that demand-driven bar recursion can be directly used to give an alternative functional interpretation of classical countable choice. We provide a short case study as an illustration, in which we extract a new bar recursive program from the proof that there is no injection from N→N to N, and compare this with the program that would be obtained using Spector's original variant. We conclude by formally establishing that our new bar recursor is primitive recursively equivalent to the original Spector bar recursion, and thus defines the same class of functionals when added to Gödel's system T.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 168, Issue 5, May 2017, Pages 887-921
نویسندگان
, ,