کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5778194 | 1633432 | 2017 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Distance structures for generalized metric spaces
ترجمه فارسی عنوان
ساختار فاصله برای فضاهای متریک عمومی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
منطق ریاضی
چکیده انگلیسی
Let R=(R,â,â¤,0) be an algebraic structure, where â is a commutative binary operation with identity 0, and ⤠is a translation-invariant total order with least element 0. Given a distinguished subset SâR, we define the natural notion of a “generalized” R-metric space, with distances in S. We study such metric spaces as first-order structures in a relational language consisting of a distance inequality for each element of S. We first construct an ordered additive structure Sâ on the space of quantifier-free 2-types consistent with the axioms of R-metric spaces with distances in S, and show that, if A is an R-metric space with distances in S, then any model of Th(A) logically inherits a canonical Sâ-metric. Our primary application of this framework concerns countable, universal, and homogeneous metric spaces, obtained as generalizations of the rational Urysohn space. We adapt previous work of Delhommé, Laflamme, Pouzet, and Sauer to fully characterize the existence of such spaces. We then fix a countable totally ordered commutative monoid R, with least element 0, and consider UR, the countable Urysohn space over R. We show that quantifier elimination for Th(UR) is characterized by continuity of addition in Râ, which can be expressed as a first-order sentence of R in the language of ordered monoids. Finally, we analyze an example of Casanovas and Wagner in this context.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 168, Issue 3, March 2017, Pages 622-650
Journal: Annals of Pure and Applied Logic - Volume 168, Issue 3, March 2017, Pages 622-650
نویسندگان
Gabriel Conant,