کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5779916 1634692 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental determination of oxygen diffusion in liquid iron at high pressure
ترجمه فارسی عنوان
تعیین تجربی اکسیژن در آهن مایع در فشار بالا
کلمات کلیدی
فشار بالا، آلیاژهای اکسیژن مایع خواص حمل و نقل انتقال، تعادل شیمیایی در اقیانوس ماگما، هسته بیرونی مایع،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی
Oxygen diffusion experiments in liquid iron have been performed at 3-18 GPa and 1975-2643 K using a multi-anvil apparatus. Diffusion couples consisted of a pure iron rod and a sintered disk of Fe0.85O0.15 placed end-to-end in a vertical orientation. Images and chemical spot analyses were acquired along the full length of the quenched sample on lines perpendicular to the diffusion interface. Exsolution features that formed during quenching consist mostly of spherical oxide blobs of at least two size populations, as well as feathery dendritic textures in more oxygen-rich regions near the top of the samples. Diffusion during heating (i.e. prior to reaching the peak annealing temperature, Tf) is treated numerically to refine Arrhenian parameters from simultaneous least-squares fits to several concentration profiles obtained from experiments at constant pressure and variable Tf. Diffusion coefficients range from ∼6×10−9 to ∼2×10−8m2s−1 over the P-T range of the study, with activation enthalpies of less than 100 kJ mol−1. We find a very weak effect of pressure on oxygen diffusion with an activation volume of 0.1±0.1cm3mol−1, in agreement with computational studies performed above 100 GPa. Arrhenian extrapolation of diffusion coefficients for oxygen to P-T conditions of the Earth's outer core yields faster average diffusion rates (∼3×10−8m2s−1) than for Si or Fe in silicon-rich liquid iron alloys or pure liquid iron (∼5×10−9m2s−1) reported previously. Oxygen diffusion data are used to constrain the maximum size of descending liquid metal droplets in a magma ocean that is required for chemical equilibration to be achieved. Our results indicate that if the Earth's core composition is representative of equilibrium chemical exchange with a silicate magma ocean, then it could only have been accomplished by large-scale break-up of impactor cores to liquid iron droplet sizes no larger than a few tens of centimeters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 464, 15 April 2017, Pages 116-123
نویسندگان
, , , ,