کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5780033 1634698 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland
چکیده انگلیسی
Our data suggest that the Isua source mantle had HSE abundances at around 50-65% of the present-day mantle, consistent with partial, but not complete, isolation from the late veneer. These data also indicate that at least part of the late veneer had been added and mixed into the mantle at the time the Isua source formed, prior to 3.8 Ga. For the same Isua samples we obtained a 13±4ppm 182W excess, compared to the modern terrestrial mantle, in excellent agreement with previous data. Using combined 182W and HSE data we show that the Moon, Isua, and the present-day bulk silicate Earth (BSE) produce a well-defined co-variation between 182W composition and the mass fraction of late-accreted mass, as inferred from HSE abundances. This co-variation is consistent with the calculated effects of various late accretion compositions on the HSE and 182W signatures of Earth's mantle. The empirical relationship, therefore, implies that the Moon, Isua source and BSE received increasing proportions of late-accreted mass, supporting the idea of disproportional late accretion to the Earth and Moon, and consistent with the interpretation that the lunar 182W value of 27±4ppm represents the composition of Earth's mantle before the late veneer was added. In this case, the Isua source can represent ambient mantle after the giant moon-forming impact, into which only a part of Earth's full late veneer was mixed, rather than an isotopically distinct mantle domain produced by early differentiation, which would probably require survival through the giant Moon-forming impact.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 458, 15 January 2017, Pages 394-404
نویسندگان
, , ,