کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5780047 1634699 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-correlation-based detection and characterisation of microseismicity adjacent to the locked, late-interseismic Alpine Fault, South Westland, New Zealand
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Cross-correlation-based detection and characterisation of microseismicity adjacent to the locked, late-interseismic Alpine Fault, South Westland, New Zealand
چکیده انگلیسی
The Alpine Fault is inferred on paleoseismological grounds to produce magnitude 8 earthquakes approximately every 330 yrs and to have last ruptured almost 300 yrs ago in 1717 AD. Despite approximately 90% of its typical interseismic period having elapsed since the last major earthquake, the Alpine Fault exhibits little present-day microseismicity and no geodetic evidence for shallow creep. Determining the mechanical state of the fault ahead of a future earthquake is a key objective of several studies, including the Deep Fault Drilling Project (DFDP). Here we use a network of borehole seismometers installed in conjunction with DFDP to detect and characterise low-magnitude seismicity adjacent to the central section of the Alpine Fault. We employ matched-filter detection techniques, automated cross-correlation phase picking, and singular value decomposition-derived magnitude estimation to construct a high-precision catalogue of 283 earthquakes within 5 km of the fault trace in an otherwise seismically quiet zone. The newly recognised seismicity occurs in non-repeating, spatially and temporally limited sequences, similar to sequences previously documented using standard methods but at significantly lower magnitudes of ML<1.8. These earthquakes are not clustered on a single distinctive structure, and we infer that they are distributed throughout a highly fractured zone surrounding the Alpine Fault. Focal mechanisms computed for 13 earthquakes using manual polarity picks exhibit predominantly strike-slip faulting, consistent with focal mechanisms observed further from the fault. We conclude that the Alpine Fault is locked and accumulating strain throughout the seismogenic zone at this location.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 457, 1 January 2017, Pages 63-72
نویسندگان
, , ,