کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5781299 | 1636006 | 2017 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analyzing coastal environments by means of functional data analysis
ترجمه فارسی عنوان
تجزیه و تحلیل محیط ساحلی با استفاده از تجزیه و تحلیل داده های عملکردی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
توزیع اندازه ذرات، رسوبات ماسه، تجزیه خوشه کارکردی، تجزیه و تحلیل اجزای عملکردی، خوشه های بردار مبتنی بر بردار،
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
چکیده انگلیسی
Here we used Functional Data Analysis (FDA) to examine particle-size distributions (PSDs) in a beach/shallow marine sedimentary environment in Gijón Bay (NW Spain). The work involved both Functional Principal Components Analysis (FPCA) and Functional Cluster Analysis (FCA). The grainsize of the sand samples was characterized by means of laser dispersion spectroscopy. Within this framework, FPCA was used as a dimension reduction technique to explore and uncover patterns in grain-size frequency curves. This procedure proved useful to describe variability in the structure of the data set. Moreover, an alternative approach, FCA, was applied to identify clusters and to interpret their spatial distribution. Results obtained with this latter technique were compared with those obtained by means of two vector approaches that combine PCA with CA (Cluster Analysis). The first method, the point density function (PDF), was employed after adapting a log-normal distribution to each PSD and resuming each of the density functions by its mean, sorting, skewness and kurtosis. The second applied a centered-log-ratio (clr) to the original data. PCA was then applied to the transformed data, and finally CA to the retained principal component scores. The study revealed functional data analysis, specifically FPCA and FCA, as a suitable alternative with considerable advantages over traditional vector analysis techniques in sedimentary geology studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Sedimentary Geology - Volume 357, 15 July 2017, Pages 99-108
Journal: Sedimentary Geology - Volume 357, 15 July 2017, Pages 99-108
نویسندگان
Carlos Sierra, Germán Flor-Blanco, Celestino Ordoñez, Germán Flor, José R. Gallego,