کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5787167 | 1641109 | 2017 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
â1-Regularized full-waveform inversion with prior model information based on orthant-wise limited memory quasi-Newton method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Full-waveform inversion (FWI) is an ill-posed optimization problem which is sensitive to noise and initial model. To alleviate the ill-posedness of the problem, regularization techniques are usually adopted. The â1-norm penalty is a robust regularization method that preserves contrasts and edges. The Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) method extends the widely-used limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method to the â1-regularized optimization problems and inherits the efficiency of L-BFGS. To take advantage of the â1-regularized method and the prior model information obtained from sonic logs and geological information, we implement OWL-QN algorithm in â1-regularized FWI with prior model information in this paper. Numerical experiments show that this method not only improve the inversion results but also has a strong anti-noise ability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Geophysics - Volume 142, July 2017, Pages 49-57
Journal: Journal of Applied Geophysics - Volume 142, July 2017, Pages 49-57
نویسندگان
Meng-Xue Dai, Jing-Bo Chen, Jian Cao,