کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5788693 | 1414264 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Segregation between the parietal memory network and the default mode network: effects of spatial smoothing and model order in ICA
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science Bulletin - Volume 61, Issue 24, December 2016, Pages 1844-1854
Journal: Science Bulletin - Volume 61, Issue 24, December 2016, Pages 1844-1854
نویسندگان
Yang Hu, Jijun Wang, Chunbo Li, Yin-Shan Wang, Zhi Yang, Xi-Nian Zuo,