کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5813302 1556612 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Persistent elevation of D-Aspartate enhances NMDA receptor-mediated responses in mouse substantia nigra pars compacta dopamine neurons
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب رفتاری
پیش نمایش صفحه اول مقاله
Persistent elevation of D-Aspartate enhances NMDA receptor-mediated responses in mouse substantia nigra pars compacta dopamine neurons
چکیده انگلیسی
Dopamine neurons in the substantia nigra pars compacta regulate not only motor but also cognitive functions. NMDA receptors play a crucial role in modulating the activity of these cells. Considering that the amino-acid D-Aspartate has been recently shown to be an endogenous NMDA receptor agonist, the aim of the present study was to examine the effects of D-Aspartate on the functional properties of nigral dopamine neurons. We compared the electrophysiological actions of D-Aspartate in control and D-aspartate oxidase gene (Ddo−/−) knock-out mice that show a concomitant increase in brain D-Aspartate levels, improved synaptic plasticity and cognition. Finally, we analyzed the effects of L-Aspartate, a known dopamine neuron endogenous agonist in control and Ddo−/− mice. We show that D- and L-Aspartate excite dopamine neurons by activating NMDA, AMPA and metabotropic glutamate receptors. Ddo deletion did not alter the intrinsic properties or dopamine sensitivity of dopamine neurons. However, NMDA-induced currents were enhanced and membrane levels of the NMDA receptor GluN1 and GluN2A subunits were increased. Inhibition of excitatory amino-acid transporters caused a marked potentiation of D-Aspartate, but not L-Aspartate currents, in Ddo−/− neurons. This is the first study to show the actions of D-Aspartate on midbrain dopamine neurons, activating not only NMDA but also non-NMDA receptors. Our data suggest that dopamine neurons, under conditions of high D-Aspartate levels, build a protective uptake mechanism to compensate for increased NMDA receptor numbers and cell hyper-excitation, which could prevent the consequent hyper-dopaminergia in target zones that can lead to neuronal degeneration, motor and cognitive alterations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuropharmacology - Volume 103, April 2016, Pages 69-78
نویسندگان
, , , , , , , , , ,