کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5813720 | 1556619 | 2015 | 10 صفحه PDF | دانلود رایگان |

- Role of the muscarinic receptor in intracardiac ganglion neurons was investigated.
- Muscarinic receptor agonist oxotremorine-M excited the ganglion neurons.
- Oxotremorine-M induced cation currents via M1 and M3 receptors.
- The oxotremorine-M response was mediated by intracellular Ca2+ release.
- The results suggest that muscarinic receptors contribute to ganglionic transmission.
Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of â60 mV. Removal of extracellular Ca2+ markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca2+ was fully inhibited by removal of extracellular Na+, indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca2+/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca2+ from intracellular Ca2+ stores and calmodulin.The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons.
Journal: Neuropharmacology - Volume 95, August 2015, Pages 395-404