کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5815217 1556648 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب رفتاری
پیش نمایش صفحه اول مقاله
Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway
چکیده انگلیسی

Partial lesion (50%) of the nigro-striatal dopaminergic pathway induces compensatory increase in dopamine release from the remaining neurons and increased extracellular oxidative stress (OS-ec) in the striatum. The present study was designed to explore the role of monoamine oxidase types A and B (MAO-A, MAO-B) in producing this increased oxidative stress. Lesion of the dopaminergic pathways in the CNS was produced in rats by intra-cerebroventricular injection of 6-hydroxydopamine (6-OHDA; 250 μg) and striatal microdialysis was carried out 5 weeks later. Striatal OSec was determined by measurement of oxidized derivatives of the marker molecule N-linoleyl-tyrosine. Striatal tissue MAO-A activity was unchanged by 6-OHDA lesion but MAO-B activity was increased by 16%, together with a 45% increase in glial cell content. The selective MAO-B inhibitor rasagiline (0.05 mg/kg s.c. daily for 14 days) did not affect microdialysate dopamine concentration [DAec] in sham-operated rats, but decreased OSec by 30%. In lesioned rats, rasagiline decreased [DAec] by 42% with a 49% reduction in OSec. The decrease in [DAec] was reversed by the dopamine D2 receptor antagonist sulpiride (10 mg/kg s.c.). The selective MAO-A inhibitor clorgyline (0.2 mg/kg s.c. daily for 14 days) increased striatal [DAec] by 72% in sham-operated rats with no change in OSec. In lesioned rats clorgyline increased [DAec] by 66% and decreased OSec by 44%. Rasagiline and clorgyline were effective to a similar extent in reduction of tissue levels of 7-ketocholesterol and the ratio GSSG/GSH, indicative of reduced intracellular oxidative stress level. This data implies that gliosis in our 6-OHDA animals together with inhibition of glial cell MAO-B by rasagiline causes an increase in local levels of dopamine at the presynaptic receptors, and a reduction in dopamine release (and in [DAec]) by presynaptic inhibition. Moreover, inhibition of MAO-A or MAO-B reduces the enhanced level of oxidative stress in the lesioned striatum, and while both clorgyline and rasagiline reduced DA oxidative metabolism, rasagiline possesses an additional antioxidant property, not only that resulting from MAO inhibition.

► Oxidative stress and dopamine levels were studied by striatal microdialysis in rats. ► In intact rats rasagiline reduced oxidative stress (OS) but clorgyline did not. ► In lesioned rats, clorgyline and rasagiline reduced OS. ► In lesioned rats, rasagiline reduced dopamine which was reversed by sulpiride. ► Reduced OS may contribute to rasagiline's neuroprotective effect in Parkinson's disease.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuropharmacology - Volume 65, February 2013, Pages 48-57
نویسندگان
, , , , ,