کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
585997 | 1453274 | 2015 | 10 صفحه PDF | دانلود رایگان |
• The paper states influence of concentration distribution of gas mixture on measured UFL and LFL.
• Compared with previous researches, the method has better agreement with experiment results.
• Due to the gravity, the hydrogen-air mixture is non-homogenous.
• Few researchers have studied influence of non-homogeneous gas mixture to measured UFL and LFL.
There is a clear difference between exiting data on the measured flammability limits of hydrogen-air mixture. The non-uniformity of concentration distribution of hydrogen in air is a contributor to deviations of the upper flammability limit (UFL) and the lower flammability limit (LFL) measured in different experiments. This paper presents a numerical model to simulate the gas mixing process from start to stability, to predict the concentration distribution, and to research the influence of concentration distribution of hydrogen in air on measured UFLs and LFLs. The commercial software package Fluent was used to carry out the numerical simulation for the concentration distribution of hydrogen in air in the vessels with length-to-diameter ratios (L: D) of 1:1, 3:1, 5:1 and 7:1 respectively. Based on the numerical simulation and analysis, the influence of concentration distribution on measured flammability limits was demonstrated for hydrogen in air in the vessel. It is found that the deviations of measured flammability limits of hydrogen in air are the minimum in the vessel with length-to-diameter ratio of 1:1, and augment with the augmentation of vessel length-to-diameter ratio. Moreover, it is presented that the deviations of measured flammability limits of hydrogen in the center of the vessel are lower than that in the top and the bottom.
Journal: Journal of Loss Prevention in the Process Industries - Volume 34, March 2015, Pages 82–91