کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
586197 1453278 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A mechanistic model for hydrocarbon plumes rising through water
ترجمه فارسی عنوان
یک مدل مکانیکی برای رسوب هیدروکربن ها از طریق آب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بهداشت و امنیت شیمی
چکیده انگلیسی


• Mechanistic model to predict plume trajectory and size.
• Includes crossflow momentum effects not previously addressed.
• Applicable to released fluid with vapor and/or liquid phases.
• Validation with small-scale tests.
• Example predictions for realistic hydrocarbon releases.

For releases of hydrocarbons from a subsea pipeline, riser, or production facility, the shape of the plume rising through the water must be predicted prior to any assessment of gas dispersion, liquid pools, or fire above the water surface. The location and size of the plume at the water surface are key parameters for subsequent consequence modeling. A mechanistic model has been developed to predict the plume trajectory and size, based on mass and momentum balances and an empirical water entrainment ratio from the literature. With suitable physical property values available, the model is applicable to releases of gas and/or liquid hydrocarbons, predicting the vaporization and vapor expansion due to decreasing hydrostatic pressure as the plume rises through the water. Some validation of the model was obtained with 16 tests in a small-scale transparent tank. The data cover a wide range of flow rates, including both choked and unchoked flow. The predicted and measured trajectories (centerline displacement) agreed reasonably well. Predictions of the model are presented for three fluids. The model is valuable for assessing the consequences of underwater hydrocarbon releases, providing input for subsequent modeling of gas dispersion or liquid pools and pool fires.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Loss Prevention in the Process Industries - Volume 30, July 2014, Pages 236–242
نویسندگان
, , ,