کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
586222 1453278 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparative study of explosion processes controlled by homogeneous and heterogeneous combustion mechanisms
ترجمه فارسی عنوان
بررسی مقایسه ای از فرآیندهای انفجاری که توسط مکانیزم های احتراق همگن و ناهمگن کنترل می شوند
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بهداشت و امنیت شیمی
چکیده انگلیسی


• Dust combustion mechanism has been confirmed based on the thermo-gravimetric analysis.
• Explosion kinetics is notably affected by two alternative dust combustion mechanisms.
• Deviations of explosion behavior were associated with limiting factors of explosion process.
• Homogenous-combustion-controlled dust has a greater sensitivity to dust concentration.
• Heterogeneous-combustion-controlled dust has a greater sensitivity to dust particle size.

The dust explosion behaviors induced by two different combustion mechanisms (homogeneous and heterogeneous mechanisms) were comparatively investigated, based on the experiments under different dust concentrations, particle sizes and initial pressures in Siwek 20-L chamber. Based on the thermo-gravimetric analysis (TGA), sweet potato dust and magnesium dust were selected as the representative dusts with homogeneous and heterogeneous combustion mechanisms, respectively. Experiments find that these two dusts have different behaviors in the explosion kinetics due to different combustion mechanisms. For sweet potato dust, the explosion pressure pmax, the pressure rise rate (dp/dt)max and the combustion fraction η exhibit similar variation trends as dust concentration increases and they all reach to the maximum values at the worst-case concentration; while for magnesium dust, the variation of (dp/dt)max is somewhat different from that of pmax, that is, the (dp/dt)max will achieve the maximum at the concentration higher than the worst-case and keep stabilized with further increase of dust concentration. As the particle size decreases, the (dp/dt)max for sweet potato dust will increasingly rise and gradually approach to a stabilized value, but for magnesium dust, the increase of (dp/dt)max becomes pronounced only in the range of smaller particle sizes. To account the effect of initial pressure on pmax under different combustion mechanisms, a dimensionless pressure PR was introduced to denote the relative intensity of explosion. It is found that, for sweet potato dust, the increased initial pressure will promote the explosion process (or with high PR) for the dust cloud with high concentration due to the augmented oxygen concentration, but for the dust cloud with low concentration, the increased initial pressure will suppress the explosion process due to the increased resistance in devolatilization. For magnesium dust, the rise of initial pressure will generally promote the explosion process even for the dust cloud with low concentration; however, in the case of small particle size, the promotion of increased initial pressure to the explosion process is not so pronounced.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Loss Prevention in the Process Industries - Volume 30, July 2014, Pages 155–163
نویسندگان
, , , , , ,