کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
586524 | 878218 | 2009 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of the net heat of combustion of organic compounds based on atom-type electrotopological state indices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An accurate quantitative structure-property relationship (QSPR) model, based on the atom-type electrotopological state (E-state) indices and artificial neural network (ANN) technique, for prediction of standard net heat of combustion (ÎHco) was developed. An extended set of 49 atom-type electrotopological state (E-state) indices that combined together both electronic and topological characteristics of the analyzed molecules were used as molecular structure descriptors for a diverse set of 1496 organic compounds. Both multilinear regression (MLR) and artificial neural network (ANN) were employed in the modeling. The ANN model with the final optimum network architecture of [49-35-1] gave a significant better performance than the MLR model. The squared correlation coefficient R2 for the ANN model was R2Â =Â 0.991 for the training set of 1196 compounds. For the test set of 300 compounds, the corresponding statistics was R2Â =Â 0.992. The results of this study showed that it would be successful to predict ÎHco by using the easily calculated atom-type E-state indices, which can provide one more way for predicting the ÎHco of organic compounds for engineering based on only their molecular structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Loss Prevention in the Process Industries - Volume 22, Issue 2, March 2009, Pages 222-227
Journal: Journal of Loss Prevention in the Process Industries - Volume 22, Issue 2, March 2009, Pages 222-227
نویسندگان
H.Y. Cao, J.C. Jiang, Y. Pan, R. Wang, Y. Cui,