کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5909151 | 1570171 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Use of multiplexed tandem PCR to estimate the prevalence and intensity of Theileria orientalis infections in cattle
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study employed a semi-quantitative, multiplexed tandem PCR (MT-PCR) to assess the prevalence and infection intensity of four genotypes (buffeli, chitose, ikeda and type 5) of Theileria orientalis in cattle in Australia. Genomic DNA samples from blood samples (n = 448) collected from 27 to 32 dairy cows from each of 15 dairy herds with a history of recent theileriosis outbreaks (Group 1), and from blood samples available from 24 cows with or without oriental theileriosis (Group 2) were tested using MT-PCR. Results revealed that all four genotypes were present in Group 1 cattle; genotype buffeli had the highest prevalence (80.5%), followed by genotypes ikeda (71.4%), chitose (38.6%) and type 5 (20.3%). Genotype ikeda had the highest average infection intensity in the cattle (relating to 55,277 DNA copies), followed by buffeli, chitose and type 5 (6354-51,648 copies). For Group 2, results indicated that genotype ikeda had a significantly higher average intensity of infection than buffeli in symptomatic cattle (P < 0.001), and symptomatic cattle had a higher intensity of ikeda than asymptomatic cattle (P = 0.004). Future studies should assess the utility of the present MT-PCR assay as a diagnostic and epidemiological tool in other parts of Australasia and the world.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infection, Genetics and Evolution - Volume 32, June 2015, Pages 68-73
Journal: Infection, Genetics and Evolution - Volume 32, June 2015, Pages 68-73
نویسندگان
Piyumali K. Perera, Robin B. Gasser, Elizabeth Read, Jakob Malmo, Hanh Nguyen, Simon Nyein, Allan Cheng, Aaron R. Jex, Grant Rawlin, Terence W. Spithill, Abdul Jabbar,