کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5914934 | 1162764 | 2010 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An adaptive non-local means filter for denoising live-cell images and improving particle detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شناسی مولکولی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Fluorescence imaging of dynamical processes in live cells often results in a low signal-to-noise ratio. We present a novel feature-preserving non-local means approach to denoise such images to improve feature recovery and particle detection. The commonly used non-local means filter is not optimal for noisy biological images containing small features of interest because image noise prevents accurate determination of the correct coefficients for averaging, leading to over-smoothing and other artifacts. Our adaptive method addresses this problem by constructing a particle feature probability image, which is based on Haar-like feature extraction. The particle probability image is then used to improve the estimation of the correct coefficients for averaging. We show that this filter achieves higher peak signal-to-noise ratio in denoised images and has a greater capability in identifying weak particles when applied to synthetic data. We have applied this approach to live-cell images resulting in enhanced detection of end-binding-protein 1 foci on dynamically extending microtubules in photo-sensitive Drosophila tissues. We show that our feature-preserving non-local means filter can reduce the threshold of imaging conditions required to obtain meaningful data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Structural Biology - Volume 172, Issue 3, December 2010, Pages 233-243
Journal: Journal of Structural Biology - Volume 172, Issue 3, December 2010, Pages 233-243
نویسندگان
Lei Yang, Richard Parton, Graeme Ball, Zhen Qiu, Alan H. Greenaway, Ilan Davis, Weiping Lu,