کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5988537 | 1578587 | 2016 | 9 صفحه PDF | دانلود رایگان |
ObjectivesCopy number variants (CNVs) are duplications or deletions of genomic regions. Large CNVs are potentially pathogenic and are overrepresented in children with congenital heart disease (CHD). We sought to determine the frequency of large CNVs in children with isolated CHD, and to evaluate the relationship of these potentially pathogenic CNVs with transplant-free survival.MethodsThese cases are derived from a prospective cohort of patients with nonsyndromic CHD (n = 422) identified before first surgery. Healthy pediatric controls (n = 500) were obtained from the electronic Medical Records and Genetic Epidemiology Network, and CNV frequency was contrasted for CHD cases and controls. CNVs were determined algorithmically; subsequently screened for >95% overlap between 2 methods, size (>300 kb), quality score, overlap with a gene, and novelty (absent from databases of known, benign CNVs); and separately validated by quantitative polymerase chain reaction. Survival likelihoods for cases were calculated using Cox proportional hazards modeling to evaluate the joint effect of CNV burden and known confounders on transplant-free survival.ResultsChildren with nonsyndromic CHD had a higher burden of potentially pathogenic CNVs compared with pediatric controls (12.1% vs 5.0%; P = .00016). Presence of a CNV was associated with significantly decreased transplant-free survival after surgery (hazard ratio, 3.42; 95% confidence interval, 1.66-7.09; P = .00090) with confounder adjustment.ConclusionsWe confirm that children with isolated CHD have a greater burden of rare/large CNVs. We report a novel finding that these CNVs are associated with an adjusted 2.55-fold increased risk of death or transplant. These data suggest that CNV burden is an important modifier of survival after surgery for CHD.
Journal: The Journal of Thoracic and Cardiovascular Surgery - Volume 151, Issue 4, April 2016, Pages 1147-1151.e4