کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
599386 | 1454270 | 2015 | 6 صفحه PDF | دانلود رایگان |

• Ferrogel is a chemical cross-linked polymer network containing magnetic nanoparticles.
• Ferrogel can be guided to the target site under the influence of an extracorporeal magnetic field.
• pH-sensitive ferrogels containing 5-FU were designed for anticancer therapy.
Ferrogels (or magnetic hydrogels) are cross-linked polymer networks containing magnetic nanoparticles: they are mechanically soft and highly elastic and at the same time they exhibit a strong magnetic response. Our work focuses on an combinatorial strategy to improve the efficacy of 5-Fluorouracil (5-FU) assisted chemotherapy, by developing novel multifunctional pH-sensitive ferrogels. We designed gels based on N,N′-dimethylacrylamide monomers polymerized in presence of methacrylic acid or 2-aminoethyl methacrylate hydrochloride, containing ferro-nanoparticles. The influence of polymeric matrix composition and exposition to magnetic field (MF) on swelling behavior and drugs release were investigated at pH 7.4 and 5. In particular, the magnetic field was obtained by using permanent magnetic bar (0.25 T) or electromagnet (0.5 and 1.2 T), with the aim to analyze quantitatively the magnetic effects. A strong influence of the magnetic field on ferrogels properties have been observed. Swelling analysis indicated a dependence on both pH and network composition, reaching a maximum at pH 7.4, for formulations containing methacrylic acid, while the application of MF appeared to decrease the swelling percentages. Release profiles of 5-FU showed effective modulation in release by application of MF: drug release is always higher in the presence of a magnetic field and generally increases with its intensity. The combining effect of pH sensitive properties and application of MF improved the performance of the systems. Results showed that our ferrogels may be technologically applicable as devices for delivery of 5-FU in a controllable manner.
Figure optionsDownload as PowerPoint slide
Journal: Colloids and Surfaces B: Biointerfaces - Volume 134, 1 October 2015, Pages 273–278